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Abstract

This paper details our winning solution to Task 4 of the NeurIPS 2020 Education
Challenge.1 We use a meta-learning framework for training and testing, a fully-
connected neural network model for response correctness prediction, and an active
learning algorithm for question selection.

1 Introduction

In this paper, we detail our approach for Task 4 of the NeurIPS 2020 Education Challenge. Note that
since the data for tasks 3&4 is different from that for tasks 1&2 (especially that it is much smaller),
we use a different model (one that fits better to smaller data) to drive adaptive question selection than
what we used for tasks 1&2. Please see our other paper for details on our model for those tasks.

Deep learning models require large amounts of training data to excel. However, in many real-world
application domains, e.g., education, geoscience, and economics, there are often contain limited
amount of data available; labeling is often a labor-intensive process. Therefore, there has been
a recent trend to learn effective deep learning models in data-scarce settings, including few-shot
learning and meta-learning [3, 13]. In particular, meta-learning based models are highly successful in
cases where learning needs to be done from a few data points per category of interest [3, 12].

In educational applications, we need to track student learning progress over time and predict their
future performance. In the knowledge tracing literature, many models have been proposed to learn
student’s evolving knowledge state [2] from their past responses to assessment questions. However,
state-of-the-art models are highly complex and require a large amount of training data [4]. Therefore,
estimating a student’s knowledge levels and predicting their future performance with limited data for
complex models is crucial in educational applications. Prior work in computerized adaptive testing
[1, 6] primarily leverage simple item response theory models [7, 10] that are not flexible enough to
leverage large amounts of training data.

The main idea we follow in this paper is that we need to ensure training and testing procedure must
match as much as possible [13]. We first formulate the problem of learning from limited data points
as a meta-learning problem. We use a training framework that matches exactly how we evaluate
our method in the testing framework. Furthermore, we detail how we use a policy (either fixed or
learnable) to select questions for assessment to improve predictive performance on future student
performance.

1st NeurIPS Education Challenge (NeurIPS 2020), Vancouver, Canada.

1Our code is available at https://github.com/arghosh/NeurIPSEducation2020.
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2 Methodology

2.1 Problem Formulation

A student’s record consists of their responses to various questions and we do not have timing
information about these responses. For student i, for question j ∈ {1, Ti} (where Ti is the number
of questions the student answered), we denote the combination of the question that they responded
to, their binary-valued response correctness, and the option they chose on this question as a tuple,
(xij , y

i
j , a

i
j), where xij ∈ N+ is the question index, yij ∈ {0, 1} is the response correctness (1

corresponds to a correct response, which means the student selected the correct option of the
question), and aij ∈ {A,B,C,D} is the option the student selected for this question. We use j
to index the questions due to the adaptive question selection process; they do not correspond to
timestamps or the actual order in which the student responded to questions. Each observation also
contains the subjects tagged with the question and the correct option; to remove excessive notational
clutter, we do not discuss them in the modeling descriptions and provide some initial observation for
these features in Section 3.

For a total of N students, we use N train students for training and the other N test = N −N train students
for testing purposes. For student i (in either the training or the test set), we split the questions they
responded to that are observed into two parts; the first part contains T i

tr training (support) questions,
i.e., j ∈ Di

tr, and second part is the set of a total of T i
meta meta (query) questions Di

meta. We would
like to select n (n� |Di

tr|) questions sequentially from the training set Di
tr, observe their responses

and predict their responses for questions in the meta set Di
meta. We detail our procedure for splitting

questions into training and meta sets for each student in Section 3.

We use a neural network f(·) to predict the response a student makes to a question (in the meta set)
and refer to it as the classifier network. The classifier network is parameterized by Θ and takes as input
question index qit, and a context variable wi(Θ) (also a function of Θ) as input and make a binary
prediction for the question qit. The context variable wi(Θ) encodes i) the estimated student knowledge
state based on their responses to a small portion of the questions in the training set and ii) the student’s
learning context, i.e., which questions have they responded to, Di

tr; we detail the particular choice
for parameterizing wi(Θ) later in this section. We can view each student as equivalent to a new task
in the meta-learning framework; in many black-box few-shots learning models, each task is often
encoded as a context variable [8, 11]. The loss function `

(
yit, f(qit,w

∗(Θ),Θ)
)

is usually set to
the binary cross-entropy loss between observed response and the predicted response probabilities.
The context variable w∗(Θ) is computed using the function g(·) that takes as input i) the questions
that they responded to, Di

tr, and ii) their responses to a small subset of questions, Φ(Di
tr), which is

selected by a personalized question selection policy. We solve the following optimization problem:

min
Θ
Lmeta(Θ) ,

N train∑
i=1

1

|Di
meta|

∑
t∈Di

meta

`
(
yit, f(qit,w

i(Θ),Θ)
)

(1)

s.t. wi(Θ) = g(Di
tr, {yt, at}t∈Φ(Di

tr)
; Θ), ∀i ∈ [1, N train].

We can also optionally jointly optimize the policy (e.g., an reinforcement learning policy) Φ as,

min
Θ,Γ
Lmeta(Θ) s.t. wi(Θ) = g(Di

tr, {yt, at}t∈ΦΓ(Di
tr)

; Θ), ∀i ∈ [1, N train],

where the question selection policy is parameterized by Γ. We experimented with both optimizing
the policy (using a actor-critic framework) and a fixed active learning policy (uncertainty sampling).
Our initial results were similar for both of these approaches; but we chose to experiment more with
the latter (fixed policy) for rapid experimentation. We discuss briefly the choice of the policy Φ later
in this section.

2.2 Model

Some existing meta-learning methods use recurrent neural networks or memory network-based
architectures. However, we do not have explicit ordering among the questions since their exact
timestamps are unknown; thus, we chose to use a feed-forward neural network that is invariant to
the order in which the responses are observed. We use two embedding modules; the embedding

2



module El(y) embeds the binary-valued response y ∈ {0, 1} into a real-valued vector in Rd, and the
embedding module Ea(a) embeds a selected option a ∈ {A,B,C,D} into a real-valued vector in
Rd. For a total of Q questions, we represent the student inputs as,

xi = [(El(yi1)� f i1)⊕ (Ea(ai1)� f i1)⊕ · · · ⊕ (El(yiQ)� f iQ)⊕ (Ea(aiQ)� f iQ)] ∈ R2dQ, (2)

zi = [zi1, z
i
2, . . . , z

i
Q]T ∈ RQ,

where f ij is 1 if we observed the answer and response for the jth question of the ith student and 0
otherwise, zij is 1 if the jth question is responded to by the ith student and 0 otherwise, yij is the
response (correct/incorrect) of the jth question of the ith student (if observed, otherwise simply 0),
aij is the answer (A/B/C/D) of the jth question of the ith student (if observed), � is element-wise
multiplication, and ⊕ is the concatenation operator. Therefore, at the start of the question selection
algorithm, f ij = 0, ∀j, and after selection of m ≤ n questions (and observing the responses), f ij = 1

for those m selected questions and only the features of these questions are active in xi. However, at
any stage, zij = 1, ∀j ∈ {t : qt ∈ Di

tr} and 0 otherwise.

We compute the context variable wi(Θ) = g(Di
tr, {yt, at}t∈Φ(Di

tr)
; Θ) for student i as,

wi = NN2

(
[xi ⊕ NN1(zi)]

)
:= NN2

(
hi
)
, (3)

NN1(zi) = Dropout(ReLU(W2(Dropout(ReLU(W1z
i))))),

NN2(hi) = Dropout(ReLU(W4(Dropout(ReLU(W3h
i))))),

where Θ consists of W1,2,3,4, a set of weight matrices and bias that are omitted for simplicity. We
compute the final output states ŷi ∈ RQ using another linear layer,

ŷi = W5w
i = [ŷi1, . . . , ŷ

i
Q] ∈ RQ,

and σ
(
ŷij
)

(where σ is the Sigmoid function) represents the probability of answering question j
correctly. The final meta loss function for student i is computed on the meta question set

1

|Di
meta|

∑
j∈Di

meta

`
(
yij , ŷ

i
j

)
.

2.3 Sample Selection Policy

We need to use a policy Φ to select n questions (in sequence) for observing the responses and answers.
Our final solution uses a fixed policy using uncertainty-based active learning algorithm. We select
question jit at step t using the following equation,

jit ∈ arg max
j∈Di

tr,f
i
j=0,zi

j=1

min{σ(ŷi
j), 1− σ(ŷi

j)}.

Thus, at each step we select a question jit that has not been selected yet (f ij = 0), is part of the support
set (zij = 1), and have the maximum uncertainty in its predicted output. Note that, after the selection
of each question, the context-variable is updated using Eqs. 2 and 3. After observing the response
and answer for question jit , we set f ij = 1 and recompute ŷi using the updated input xi and zi.

2.4 Optimization

We solve the problem in Eq. 1 using stochastic gradient descent (SGD) algorithm. Moreover, we also
augment the objective with a loss term on the student’s responses to questions that are selected and
observed. The final objective becomes

min
Θ

N train∑
i=1

( 1

|Di
meta|

∑
t∈Di

meta

`
(
yit, f(qit,w

i(Θ),Θ)
)

+
α

m

∑
j∈Di

tr,f
i
j=1

`
(
yij , f(qij ,w

i(Θ),Θ)
))

(4)

s.t. wi(Θ) = g(Di
tr, {yt, at}t∈Φ(Di

tr)
; Θ), ∀i ∈ [1, N train],
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where α (set as 0.1) is a small tunable hyper-parameter and m is the number observed responses so
far (in our case less than or equal to n = 10).

Since the model parameters are randomly initialized at the start of the training, we do not introduce
the question selection policy at the beginning. Moreover, for a fixed question selection policy, some
questions might not be selected enough times for the model to be generalizable to questions in the
meta set. Therefore, we use a simple heuristic during training: For the first K epochs, we use a
random question selection policy Φrandom. After that for each iteration, we use the random selection
policy with probability p and use the active learning-based selection policy Φentropy with probability
1− p. At the testing phase, we always use active learning-based selection policy Φal.

3 Experimental Results

Training and Testing. We do not use a fixed split of training and meta questions. Instead, at each
epoch, we randomly partition the set of questions responded to by each students into training and
meta sets with 80% questions and 20% questions, respectively; We observed overfitting with fixed
training and meta sets. At the same time, we need to learn the best model based on validation/test loss;
Random training and meta sets at every epoch usually results in high variance of the validation/test
loss. Thus, we used 120 fixed seeds to create random question splits and fix them on the local test
set. At testing time, we compute performance across these 120 seeds for each student to get a robust
estimate of the model’s performance. We use use 95% of the students in the training set for training
and the rest of the students for local testing.

Network Architectures and Hyper-parameters. We use the Adam optimizer [5] to optimize the
model parameters with learning rate 2e− 5. We mix uncertainty sampling-based question selection
with probability p = {75, 66.67}% with random question selection with {25, 33.33}% probability
and set the number of initial exploration epochs to be K = 50. We train the models for 500 epochs
and save the best five models based on average test accuracy on questions partitions for students in
the local test set. We set the output dimension for W3,W4 as 1024 and fix the output dimension
for W5 to the number of questions Q = 948. We set the output dimension for W1,W2 as 128 and
{256, 1024}, respectively. We set the dropout rate from {25%, 50%}.

Extension. We also experimented with augmenting tree-structured subject information provided
for each question. We decided to use only the most fine-grained (level 3) subjects, i.e., subjects that
do not have any descendants in the tree for each question. We augment the subject information in the
input state as,

xi =
[((
El(ri1)⊕ Ea(ai1)⊕ Es{si1}

)
� f i1

)
⊕ · · · ⊕

((
El(riQ)⊕Ea(aiQ)⊕Es{siQ}

)
� f iQ

)]
∈R3dQ,

where we use another embedding module Es to embed multiple subjects tagged with a question (for
simplicity, we used the summation of individual subject embeddings). Initial local evaluation with
subject information provided a marginal improvement of 0.01− 0.03% on predictive accuracy.

Results and Discussion. One of our key observations is that learning with limited samples results
in a high variance in the results. We would want a robust model that performs well across most of the
random partitions (120 in our case). Although we selected a model based on average performance
across multiple partitions, we observed the best model in one partition may not perform well in other
partitions. We believe the low number of students in the test set might be one of the reasons behind
this.

Nevertheless, learning a robust model from limited observation for each student (irrespective of the
number of students) remains a key challenge in this framework. We observed that the actor-critic
algorithm [9] performs similarly to active learning-based methods in our preliminary experiments with
a larger test set (20% students). We believe that learning a policy (using reinforcement learning) might
improve results than a fixed active learning algorithm with more training and enough hyperparameter
tuning.
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