
Option Tracing: Beyond Binary Knowledge Tracing

Aritra Ghosh
University of Massachusetts Amherst

Amherst, MA 01002
arighosh@cs.umass.edu

Andrew S. Lan
University of Massachusetts Amherst

Amherst, MA 01002
andrewlan@cs.umass.edu

Abstract

This paper details our solutions to Tasks 1&2 of the NeurIPS 2020 Education Chal-
lenge.1 Knowledge tracing, a family of methods to estimate each student’s mastery
levels on skills/knowledge components from their past responses to assessment
questions, is useful for progress monitoring, personalization, and helping teachers
to deliver personalized and targeted feedback to students to improve their learning
outcomes. One key limitation of current knowledge tracing methods is that they
can only estimate an overall knowledge level of a student since they analyze only
the binary-valued correctness of student responses. We adapt a series of popular
knowledge tracing methods to the task of option prediction in multiple choice
questions. Experimental results show that our method performs well on both option
prediction and correctness prediction.

1 Introduction

Knowledge tracing (KT) [3], i.e., estimating student mastery levels on knowledge compo-
nent/skill/concept they are learning from their past responses to assessment questions/items and
using them to predict their future performance, is a key task in learning analytics. Many different
KT methods have been developed, ranging from hidden Markov model-based Bayesian knowledge
tracing [8, 10, 14], factor analysis-based models [1, 11], especially the item Difficulty, student ability,
skill, and student skill practice history (DAS3H) model [2], to deep learning-based models [5, 12].
These methods have enjoyed various degrees of success; the former two types of KT methods exhibit
excellent interpretability while deep learning-based methods trade off interpretability for excellent
predictive accuracy on students’ future performance. However, one key limitation of these binary
KT methods is that they use the binary-valued indicator of whether a student responds to a question
correctly or not, rather than their exact response, to estimate their overall mastery level on each
knowledge component. However, not all incorrect responses are equal: past research has found that
the number of different ways student answers can be incorrect can be large: in step-by-step solutions
to open-ended mathematics problems, there are often more than ten incorrect ways to solve a problem
[9], each corresponding to a unique cause of error; in short-answer questions, only 30 − 60% of
incorrect answers generated by students are anticipated by teachers or numerical simulations [4, 13].
The Eedi dataset provided by the NeurIPS 2020 Education Challenge that include the exact options
students select on multiple choice questions (MCQs) provides us with an opportunity to partially
address these limitations; despite not open-ended, certain incorrect distractor options in well-designed
MCQs can provide valuable insights into a student’s error mode and the source of the error.

2 Problem Setup

Each student’s performance record consists of a sequence of responses to questions assigned at a series
of discrete time steps. For student i at time step t, we denote the combination of the question qit ∈ N+

1st NeurIPS Education Challenge (NeurIPS 2020), Vancouver, Canada.

1Our code is available at https://github.com/arghosh/NeurIPSEducation2020.

https://github.com/arghosh/NeurIPSEducation2020

that they answered, the set of subjects {sit,j}
nit
j=1 this question covers, their binary-valued response

correctness rit ∈ {0, 1} (1 corresponds to a correct response, which means the student selected the
correct option of the question), the option yit ∈ {A,B,C,D} they chose, and the correct option

cit ∈ {A,B,C,D} to this question as a tuple, (qit, {sit,j}
nit
j=1, r

i
t, y

i
t, c

i
t), where sit,j ∈ N+ denotes the

index of the jth subject, j ∈ 1, . . . , nit since each question can be tagged with multiple subjects. The
datasets also contains the timestamp of each interaction. We have several additional features (quiz
id, group id, student demographic information) associated with each tuple. To remove excessive
notational clutter, we chose to omit these features in our modeling descriptions. However, we always
use these features in our experiments; the experimental section details our approach to incorporate
them. In the challenge setup, we associate a flag variable f it ∈ {0, 1} with each time step, where 1
represents that the timestep is part of the challenge training set and available to use. This variable
help us to mask the data when we compute the training loss. Given (qit, {sit,j}

nit
j=1, r

i
t, y

i
t, c

i
t, f

i
t = 1)

and (qit, {sit,j}
nit
j=1, c

i
t, f

i
t = 0), the task is to predict yi

′

t′ (and ri
′

t′) for (t′, i′) ∈ {(t, i) : f it = 0}.

3 Methodology

Before delving into the individual methods, we start with a set of unified modules that apply to
all methods discussed in this paper. The question embedding module Eq : q → Rd transforms the
question index qit to a d-dimensional, learnable real-valued vector in Rd. Similarly, the response
embedding module Er : r → Rd transforms the response correctness rit to Rd and the option
embedding module Eo : {A,B,C,D} → Rd transforms the correct option cit and the chosen option
yit to vectors in Rd. We do not use separate embeddings for every question-option (q, o) pair since
that leads to severe overfitting in our experiments; instead, the 2d-dimensional embedding for (q, o)
is obtained using [Eq(q) ⊕ Eo(o)] where ⊕ is the concatenation operator. The subject embedding
module Es : s → Rd transforms the subject index to Rd. Since each question may be tagged with
several subjects, we define the final subject embedding as Es({sit,j}

nit
j=1) =

∑nit
j=1 Es(sit,j). Some of

the methods (such as NCF) use a user embedding module Eu : i→ Rd that transforms the student
index to Rd. For simplicity, we use the same d-dimensional vector for all embedding modules;
however, the dimensions of each module can be different. We train all model parameters, denoted as
Θ, which contains the embeddings listed here and other model parameters specific to each individual
method, by maximizing the log-likelihood of the selected options (or responses),

argmax
Θ

S∑
i=1

Qi∑
t=1

{
∑

o∈{A,B,C,D}

1[yit = o] log Pr(o; Θ) or
∑

c∈{0,1}

1[rit = c] log Pr(c; Θ)},

where 1 is the indicator function and S and Qi denote the number of students and the number of
questions student i responded to that are observed, respectively. Since the options (responses) are
categorical (binary), the resulting loss function corresponds to the common cross-entropy loss (binary
cross-entropy loss) [6].

3.1 Model

NCF. Neural collaboartive filtering (NCF) is one of the most popular CF algorithms for user-
item interaction datasets. In the option prediction task, students correspond to users and questions
corresponds to items. The input for NCF at time step t for student i, xit, is given by

xit = [Eq(qit)⊕ Eu(i)⊕ Es({sit})].

Predictive probabilities p(yit = o) over four options are calculated using the softmax function [6],

zit = NN(xit) ∈ R4, Pr(yit = o ∈ {A,B,C,D}|xit) = [Softmax(zit)]o, ŷ
i
t = argmaxo∈{A,B,C,D}[z

i
t]o,

Predictive probabilities p(rit = c) over two responses are calculated using the sigmoid function [6],

zit = NN(xit) ∈ R1, Pr(rit = 1|xit) = Sigmoid(zit), r̂it = 1[zit ≥ 0.5],

where NN(·) denotes a feed-forward, fully-connected neural network and []o refers to the oth entry of
a vector. In NCF, the model parameters are the weights and biases in the feed-forward neural network,
NN(·). This prediction module is shared by the subsequent methods.

2

NCF+ DAS3H. The NCF model uses embeddings for students that are static over time and inde-
pendent of their current learning context, corresponding to the static student ability and question
difficulty parameters in IRT models. The DAS3H model augments IRT by summarizing student’s
learning context using some hand-crafted features such as the number of correct past responses and
the number of incorrect past responses on questions in the same subject as the current question.
Motivated by DAS3H, we augment the NCF model with DAS3H-like features as

xit = [Eq(qit)⊕ Eu(i)⊕ Es({st})⊕WTDAS3H Features],

where W ∈ R16×d is a weight matrix mapping the DAS3H features into the input vector space. Since
in the challenge setup we also have access to a student’s future responses when we are predicting
their current response, we include two additional features for the total number of future correct
attempts and future incorrect attempts. Moreover, since questions may be tagged with multiple
subjects, we compute these count where set of subjects are partially (4 features) or fully matched (4
features) between the current question and the past/future questions, resulting in a total of 8 features.
We compute additional 8 features for interactions (past and future) that are attempted in a shorted
time periods (≤ 0.1 day). Similar to [2], we apply log to these counts. The model parameters for
NCF+DAS3H include the additional parameter matrix W in addition to the NCF method.

LSTM. The main drawback of NCF is that the student embedding is static and not updated as
students respond to more questions and their knowledge states evolve. Recurrent neural networks, and
in particular long short-term memory network (LSTM)-based approaches are capable of modeling
evolving knowledge or hidden states [12]. However, we cannot directly use methods such as DKT in
the CF setup since the student’s responses at some time steps in their past are not observed. Therefore,
we use the following method to handle evolving knowledge states using recurrent networks with
missing observations. The input to the LSTM at each time step is given by

xt = [Eq(qit)⊕ Eo(cit)⊕ Es({sit})⊕
(
Eo(yit)� f it

)
⊕
(
El(rit)� f it

)
], (1)

where � denotes the element-wise multiplication between two vectors. We mask the option embed-
dings and response correctness embeddings using the flag variable for time steps where we do not
observe them; we still use the question embedding as input since we know the student responded to
the question. Then, the student’s latent knowledge states at the next time step are updated using the
LSTM module as ht+1 = LSTM(ht,xt). The output to the prediction module is computed using,

zit = NN([hit ⊕ Eq(qit)⊕ Eo(cit)⊕ Es({sit})]) ∈ R4 or 1. (2)

The parameters in the LSTM model include the input and transition weight matrices and bias vectors.

Bi-LSTM. Similar to our extension to the NCF method using features of both a student’s past and
future responses, we can extend the base LSTM model to a bi-directional LSTM (Bi-LSTM) model
[7]‘ to learn student’s knowledge states using information on both the past and the future. Here,
we compute two latent knowledge states using two separate LSTM modules, the forward state

−→
h t

that summarizes the student’s past response history and the backward state
←−
h t that summarizes the

student’s future response history at time step t as
−→
h t+1 = Forward LSTM(

−→
h t,xt),

←−
h t−1 = Backward LSTM(

←−
h t,xt).

The final latent knowledge state is the concatenation of the two states as ht = [
−→
h t ⊕

←−
h t]. The

parameters in the Bi-LSTM model include two sets of parameters for the forward and backward
LSTMs.

Bi-LSTM+DAS3H. Similarly, we also include the DAS3H features in the Bi-LSTM model. We
concatenate DAS3H features in the output module as,

zit = NN([hit ⊕ Eq(qit)⊕ Eo(cit)⊕ Es({sit})⊕WTDAS3H Features]) ∈ R4 or 1.

Bi-LSTM+DAS3H+ Attention. We also observe that students respond to questions from the same
quiz together within a short period of time. Since it is reasonable to assume that the knowledge states
of students do not change significantly in a short period of time, we explored using attention modules
to take other questions in the same quiz into account when predicting the student’s response to a

3

Validation Response Prediction Option Prediction
Model Split Local Public Private Local Public Private

NCF 20% 74.39 74.68 74.69 65.26 65.36 -
NCF+DAS3H 20% 75.76 - - 65.81 - -

LSTM 20% 75.15 - - 66.04 - -
Bi-LSTM 20% 76.31 76.26 - 66.71 66.70 -

Bi-LSTM+DAS3H 20% 76.45 - - 66.78 - -

Bi-LSTM+DAS3H 5% 76.88 76.89 - 67.30 - -
Bi-LSTM+DAS3H +Attention 5% 76.98 76.92 76.94 67.31 67.33 67.38

Table 1: Accuracy (in %) of all methods on a local test dataset (part of the challenge’s training set)
and the challenge public and private leaderboard test datasets.

question. The queries and the keys for each question are computed using linear layers on the quiz
embeddings. The values are computed using a linear layer on the option and response correctness
embeddings as

Queryit = WQEqz(quiz-idit), Keyit = WKEqz(quiz-idit), Valueit = WV Er(rit),

git = Masked Attentionτ,τ 6=t,fiτ=1

(
Queryit,Keyiτ ,Valueiτ

)
.

We use the masked attention mechanism where at each time index, we only attend to all the training
time steps except the current one. The computed attention values git are concatenated into the zit
vector as

zit = NN([git ⊕ hit ⊕ Eq(qit)⊕ Eo(cit)⊕ Es({sit})⊕WTDAS3H Features]) ∈ R4 or 1.

4 Experimental Results and Discussion

In this section, we discuss our local experimental results, public and private leaderboard results. Since
the dataset is large, we initially experimented with a validation set that is 20% of the training set;
however, we submitted predictions using only 5% as the validation set since this setting leads to better
results. We select question embedding dimensions from {16,24,32}. We select dropout rates from
{0.1,0.15, 0.2}. We set hidden dimension as 128 for recurrent neural network-based models. For NCF,
we set the student embedding dimension to 128. We also used group ID, quiz ID, time difference,
and confidence values; we use embedding layers (for categorical) and linear layers (for continuous)
for these features and simply concatenate them with xt. For the response correctness prediction task,
we simply replace the final softmax layer of the option predictor module (NN : · → [0, 1]4) with a
sigmoid layer (NN : · → [0, 1]) for all models; the resulting loss function corresponds to standard
binary cross entropy loss.

Table 1 lists the performance of all methods on predicting unobserved options and response cor-
rectness. We observe that with static embeddings, NCF performs the worst among all the methods
for both tasks. DAS3H features alleviate the problem of static embeddings to some extent On the
response prediction task, NCF+DAS3H improves over NCF by Accuracy/AUC by ∼ 2%; however,
the performance improvement in the option prediction task is marginal ∼ 0.5%. This observation
suggests that DAS3H features are more helpful for the response prediction task than the option
prediction task, which is not surprising since these features count only the correctness of past and
future responses, hence providing little additional information on which distractor option a student
would pick if they cannot select the correct option. On the other hand, recurrent neural network-based
approaches such as LSTM perform significantly better. Moreover, since Bi-LSTM uses information
from both the past and the future, it is able to outperform LSTM, especially on the response prediction
task (by around 2%). Furthermore, additional features on top of the Bi-LSTM model, especially
DAS3H, lead to small performance improvements over Bi-LSTM (around 0.1% on both tasks). Using
attention modules provides an additional 0.1% improvement on the response prediction task.

Acknowledgement

This work is supported by the NSF under grant no. IIS-1917713.

4

References

[1] H. Cen, K. Koedinger, and B. Junker. Learning factors analysis–A general method for cognitive
model evaluation and improvement. In Proc. International Conference on Intelligent Tutoring
Systems, pages 164–175, June 2006.

[2] B. Choffin, F. Popineau, Y. Bourda, and J.-J. Vie. Das3h: Modeling student learning and forget-
ting for pptimally scheduling distributed practice of skills. In Proc. International Conference
on Educational Data Mining, pages 29–38, July 2019.

[3] A. Corbett and J. Anderson. Knowledge tracing: Modeling the acquisition of procedural
knowledge. User Modeling and User-adapted Interaction, 4(4):253–278, Dec. 1994.

[4] J. A. Erickson, A. F. Botelho, S. McAteer, A. Varatharaj, and N. T. Heffernan. The automated
grading of student open responses in mathematics. In Proceedings of the Tenth International
Conference on Learning Analytics & Knowledge, pages 615–624, 2020.

[5] A. Ghosh, N. Heffernan, and A. S. Lan. Context-aware attentive knowledge tracing. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 2330–2339, 2020.

[6] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
[7] A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural

networks. In 2013 IEEE international conference on acoustics, speech and signal processing,
pages 6645–6649. IEEE, 2013.

[8] M. Khajah, Y. Huang, J. González-Brenes, M. Mozer, and P. Brusilovsky. Integrating knowledge
tracing and item response theory: A tale of two frameworks. In Proc. International Workshop
on Personalization Approaches in Learning Environments, volume 1181, pages 7–15, Jan. 2014.

[9] A. S. Lan, D. Vats, A. E. Waters, and R. G. Baraniuk. Mathematical language processing:
Automatic grading and feedback for open response mathematical questions. In Proc. ACM
Conference on Learning at Scale (L@S), pages 167–176, Mar. 2015.

[10] Z. A. Pardos and N. T. Heffernan. Modeling individualization in a Bayesian networks imple-
mentation of knowledge tracing. In Proc. 18th Intl. Conf. on User Modeling, Adaptation, and
Personalization, pages 255–266, June 2010.

[11] P. Pavlik Jr, H. Cen, and K. Koedinger. Performance factors analysis–A new alternative to
knowledge tracing. In Proc. International Conference on Artificial Intelligence in Education,
pages 531–538, June 2009.

[12] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami, L. J. Guibas, and J. Sohl-Dickstein.
Deep knowledge tracing. In Proc. Conference on Advances in Neural Information Processing
Systems, pages 505–513, Dec. 2015.

[13] D. A. Selent. Creating Systems and Applying Large-Scale Methods to Improve Student Remedi-
ation in Online Tutoring Systems in Real-time and at Scale. PhD thesis, Worcester Polytechnic
Institute, 2017.

[14] M. V. Yudelson, K. R. Koedinger, and G. J. Gordon. Individualized bayesian knowledge tracing
models. In International conference on artificial intelligence in education, pages 171–180.
Springer, 2013.

5

	Introduction
	Problem Setup
	Methodology
	Model

	Experimental Results and Discussion

