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Abstract

This paper presents our solution to the task 2 of the NeurIPS 2020 Education
Challenge, which aims to predict the multiple-choice answer students choose
for each question. We propose a novel Order-aware Cognitive Diagnosis model,
shortly named OCD, to accomplish this task. Specifically, considering the attention
span of students are limited during the whole quiz, we utilize the convolutional
sliding windows in CNNs to model the attention span of students, in which the
effects of question order are captured simultaneously. Moreover, the attention
spans show certain variabilities between different students or at different learning
phases. Therefore, we further present CNNs with different sizes of convolutional
sliding windows to handle multi-scale attention spans. Finally, we take advantage
of the attention mechanism to learn the similar weights of questions and give out
the predictions. Our proposed OCD model has achieved the accuracy of 0.6800
on public evaluation and 0.6803 on private evaluation, which are both the best
performances in this task.

1 Introduction

Recent decades have witnessed the fast evolution of educational data mining (EDM), which focuses
on applying a wide variety of data mining tools and techniques to any educationally related data.
Cognitive diagnosis, with the purpose of assessing students’ knowledge state (knowledge proficiency
of specific skills), is one of the fundamental and crucial tasks in EDM [1].

Existed works mainly focus on diagnosing the knowledge proficiency of students and predicting the
binary values of whether they can answer correctly. In contrast, there is little attention paid to predict
their specific choices. Generally, it is harder to realize the later target, because the multiple-choice
answer can be determined by the characteristics of students, questions and tests. However, compared
to just predicting right or wrong, we can relatively discover potential common misconceptions
that students may have through predicting their choices. In task 2 of the NeurIPS 2020 Education
Challenge, the organizers provide the training data, which is consisted of millions of records of
answers given to questions by students, as well as some metadata about questions, students and
answers (such as SubjectId, Gender and QuizId). The questions in the dataset are all multiple-choice,
each with 4 potential choices and 1 correct choice, and we had to predict students’ responses for a
hidden, held-out subset of (StudentId, QuestionId) pairs.
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To predict the multiple-choice answer of students, the effects of question order is critical which can
not be ignored [2]. Taking a few minutes to think of a simple situation: after choosing ’B’ continuous
for two or more times, would students choose ’B’ without hesitation for the next question? Actually,
they tend to choose other options rather than ’B’, especially when they are not very confident about
the correct answer. Besides, the probability that several continuous questions have the same correct
options is relatively small within the same quiz. The effects of question order on students’ multiple-
choice answers have complex micro and macro factors, the above situation is just an intuitive and
easy-understanding case of the effects of question order. To this end, we propose a novel Order-aware
Cognitive Diagnosis (shortly named OCD) model to predict the multiple-choice answer of students.
Our proposed OCD model has achieved the accuracy of 0.6800 on public evaluation and 0.6803 on
private evaluation, which are both the best performances in this task. In Section 2, we present the
structures of our OCD model. In Section 3, we introduce how we process the data and detail the
process of experiments to get the best results. In Section 4, we make a simple summarisation and
discuss the potential of OCD.

2 Order-aware Cognitive Diagnosis Model

2.1 Modeling Order-aware Attention Span of Students

In an intelligent tutoring system, supposing there are the set of questions Q = {q1, q2, ..., qj , ..., qJ}.
The practice records of a student are denoted as X = {(q1, c1), (q2, c2), ..., (qL, cL)}, the tuple
(ql, cl) represents a practice record (i.e., the question-choice pair) of the student, where ql is the
question, cl represents the multiple-choice answer, L is the length of the records. We first represent
the question ql by random initialized vector ql ∈ Rdq , where dq is the dimensions. The multiple-
choice answer cl is represented by one-hot encoding cl ∈ Rdc , where dc is the number of choices.
Then, we concatenate ql and cl to represent the record (ql, cl) as vector rl = ql ⊕ cl ⊕ ... ⊕ cl,
where rl ∈ Rdq+α×dc . Here we repeat cl for α times for balancing the length of ql and cl. Finally,
we concatenate all the practice records of a student in order of response time and get the practice
embedding s̃ = r1 ⊕ r2 ⊕ ...⊕ rL, where s̃ ∈ RL×(dq+α×dc). Then a multi-layer perceptron (MLP)
is applied to transform s̃ to the student embedding s ∈ RL×Ks , where Ks is the dimensions.

In our previous work [3], we have successfully applied convolutional sliding windows to capture the
distinctions of learning rates in continuous learning interactions among students. A recent work has
also indicated that CNNs can learn the absolute position information impliclitly [4]. For modeling the
effects of question order within specific attention span of students, inspired by the idea of learning
windows [3], we utilize convolutional sliding windows to simulate the attention span of students.
The convolutional sliding window is represented as Wc ∈ RKc×Ks , where Kc is the length of
convolutional sliding window. After designing the convolutional sliding window, one-dimensional
CNNs is utilized to take Kc continuous practice records to produce the new features of students’
knowledge proficiency. For keeping the consistency of shapes, we do not set pooling operation and
zero-padding is applied. Then we stack β same convolutional layers on top of each other to make
up hierarchical convolutional layers and deeper fuse the practice records to output the knowledge
proficiency of students. Finally, for each practice record sl in s, the whole length of its order-aware
attention span is (Kc − 1)β +1, where the first layer models the most recent Kc practice records and
every upper layer covers Kc − 1 farther practice records.

2.2 Modeling Multi-scale Attention Spans

Generally speaking, the attention span is not static, but shows certain variabilities between different
students or at different learning phases. In section 2.1, we have realised the order-aware cognitive
diagnosis model with the attention span of (Kc − 1)β + 1. Now we are going to expand it to model
multi-scale attention spans. Concretely, we take advantage of various sizes of convolutional sliding
windows, where each window is corresponding to a specific attention span. Supposing the length
of convolutional sliding window is Kci, thus the window will be Wci ∈ RKci×Ks and the whole
length of the order-aware attention span will be (Kci − 1)β + 1, where the first layer models the
most recent Kci practice records and every upper layer covers Kci − 1 farther practice records. We
apply different convolutional sliding windows to model multi-scale attention spans and the average
peformance on all attention spans will be the final knowledge proficiency of students.
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2.3 Making Predictions

After multi-scale attention spans modeling, we transform the student embedding s to deep features
about students’ knowledge proficiency h ∈ RL×Kh of each question in the test. Liu et al. [5] pointed
that students may get similar scores on similar questions. Following this idea, we utilize a simple
attention mechanism to calculate the similarity between questions for making predictions of the
(L+1)-th question. Then the student state at (L+1)-th practice record is a weighted sum aggregation
of all historical features of knowledge proficiency based on the correlations between question qL+1
and the historical ones {q1, q2, ..., qL}. Formally, for predicting multiple-choice answer of question
qL+1, we define the attentive state vector hatt as:

hatt =

L∑
l=1

γlhl,

γl = softmax(al), l ∈ (1, L)

al = qL+1 · ql. l ∈ (1, L)

(1)

Then we concatenate the attentive state vector hatt and question qL+1 and predict the student’s choice
on question qL+1 as following formulas:

I = f(W1 · [qL+1 ⊕ hatt] + b1),

p = f(W2 · I+ b2),
(2)

where ⊕ is the operation of concatenating, W1 ∈ RKh×Ki and W2 ∈ RKi×dc are the weight
matrices, b1 ∈ RKi and b2 ∈ Rdc are the bias terms and f is the non-linear function. p indicates the
probability that each option will be selected by the student and the option with max probability will
be the result of prediction.

3 Experiments

3.1 Dataset

The training dataset of task 2 is consisted of 27613 questions, 118971 students and 15867850 practice
records. Each question has four answer options, we have to predict students’ choices for a hidden,
held-out subset of practice records. We first cluster the practice records of each student based on the
quizid of questions. Within each quiz, we rank the practice records in order of the response time.
There are total 2004029 records pf quizzes for all students, we depict the length of these quizzes in
Figure 1. Moreover, we have counted that over half of quizzes have a length of 10, and over 98% of
quizzes have a length of less than 20. Therefore, we designed four ways to split the dataset based on
the quizid as follows:

• quiz-10: in each quiz, we set the length of stundents’ practices as 10.
• quiz-20: in each quiz, we set the length of stundents’ practices as 20
• quiz-sorted-10: for every student, we first rank all the answered quizzes from long to short, and

other settings are the same as quiz-10.
• quiz-7days-10: for all quizzes with more than 10 questions, if the interval between two adjacent

practice records is more than seven days, we see them as a split point. Then we rank all the split
quizzes from long to short, and other settings are the same as quiz-10.

3.2 Experimental results

In all experiments, the learning rate was set to be 0.001 and divided by 5 every 3 training epochs.
dq, α, Ks, Kh, Ki, β were 388, 10, 256, 256, 128, 3 respectively and there were three sizes of
convolutional windows: 2, 3, 4. The 10-fold cross validation was used to train and evaluate our
model. All the hyper-parameters are randomly initialized with uniform distribution, optimized with
mini-batch Adam on the training set.

For each split of the dataset, we conducted 10-fold cross validation and the experimental results are
shown in Table 2. As we can see from the table, quiz-7days-10 gets the best performance, because it
avoids the interaction between quizzes as much as possible. The performance on quiz-20 shows a
significant drop because the majority of quizzes have combined with other quizzes. For each fold, we
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Figure 1: The length distribution of all quizzes.

Table 1: Ablation study
Models accuracy
NeuralCD [6] 0.6580
OCD-shuffle 0.6656
OCD-1-attention span 0.6726
OCD 0.6736

Table 2: The 10-fold experimental results on different ways of dividing data.
Datasets k-fold1 k-fold2 k-fold3 k-fold4 k-fold5 k-fold6 k-fold7 k-fold8 k-fold9 k-fold10
quiz-10 0.6698 0.6696 0.6713 0.6704 0.6713 0.6689 0.6701 0.6734 0.6727 0.6722
quiz-20 0.6599 0.6612 0.6623 0.6626 0.6617 0.6602 0.6601 0.6655 0.6641 0.6647
quiz-sorted-10 0.6710 0.6718 0.6725 0.6716 0.6723 0.6703 0.6710 0.6747 0.6735 0.6736
quiz-7days-10 0.6712 0.6717 0.6725 0.6729 0.6726 0.6707 0.6717 0.6756 0.6741 0.6745

can get the corresponding prediction results on the testing data, then we take the averaged predictions
as the submission. For quiz-7days-10, we get the accuracy of 0.6777 on public evaluation. The best
performance of 0.6800 on public evaluation and 0.6803 on public evaluation is achieved by averaging
predictions on all four ways of dividing data.

Apart from this, we conduct some simple ablation study on quiz-10, the results are shown in Table
1. NeuralCD is a representive cognitive diagnosis model with state-of-art performance [6] and we
choose it as the baseline model. OCD-shuffle is a variant of OCD without ranking the practices
in order of response time and OCD-1-attention span is also a variant of OCD with only one kind
of convolutional sliding window. The experimental results indicate the superior of our proposed
order-aware cognitive diagnosis model. Besides, through model the effects of question order, OCD
can well improve the performance of cognitive diagnosis.

4 Discussions

In this paper, we proposed the order-aware cognitive diagnosis to model the effects of question order
in the cognitive process of students. Through utilizing convolutional sliding windows to simulate the
attention span of students and designing different sizes of windows to handle multi-scale attention
spans, our proposed OCD model achieved better diagnosis results and got the best performance
on the task 2 of the NeurIPS 2020 Education Challenge (actually, OCD also performed well on
task 1). These observations indicate that it is valuable to model the effects of question order in
cognitive process and it is possible to capture certain student-specific variabilities under the idea of
learning windows. Moreover, quite a few practices in the same quiz have same label of response time,
which can not be ranked. Therefore, we believe the performance of OCD can have a considerable
improvement if providing these missing information.
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